38 Abstracts

F₁-ATPase from Saccharomyces cerevisiae was inhibited under conditions of ATP hydrolysis with a fragment of yeast IF₁ consisting of residues 1-53 (known as yI1-53). The complex was crystallised in the presence of 0.5 mM ADP and 1.5 mM ATP. In the inhibited structure, residues 17-40 of yI1-53 form an α -helix, of which residues 17-35 are bound in a cleft between the C-terminal domains of the α_{DP} - and β_{DP} -subunits, and residues 36–40 of this α -helix extend beyond the external surface of the F_1 -domain. The α -helix interacts mainly with the $\beta_{DP}\text{-subunit,}$ but also with subunits α_{DP} and β_{TP} . Residues 1–16 of yI1–53 form a loop from residues 6 to 16 held together by a salt bridge (residues R9 and D15) and a hydrogenbonding network involving residues S4, R9 and D15 and residue R9 of the γ -subunit. The N-terminal region from residues 1 to 5 extends into the central aqueous cavity of the enzyme around the central stalk and makes contacts with the $\alpha_{\text{E}}\text{--}, \beta_{\text{DP}}\text{--}$ and $\gamma\text{--subunits}.$ Many aspects of this structure are similar to those of the structure of bovine F₁-I1-60 [1]. However, the structures differ in several significant respects. First, the α -helix of yI1-53 is tilted more steeply (relative to the central stalk) than its counterpart in the bovine structure, and so the detailed interactions that contribute to binding differ in some respects. Second, the loop structure in residues 6-16 of vI1-53 replaces a second short α-helix from residues 13 to 17 of bovine I1-60. Third, the structures differ in the nucleotide occupancies of catalytic subunits; bovine F₁-I1-60 contains inorganic phosphate bound to the P-loop in the β_F -subunit whereas the β_F -subunit in the yeast complex contains ADP, but no magnesium. In both structures, the β_{DP} - and β_{TP} -subunits are occupied by magnesium ADP. The bovine structure was interpreted as representing a post-hydrolysis "dead-end" state [1], whereas the yeast structure appears to represent a post-hydrolysis, pre-product release intermediate that precedes the "ground state" structure of the enzyme in the hydrolytic cycle.

Reference

[1] Gledhill JR et al. (2007) Proc. Natl. Acad. Sci. 40: 15671-15676.

doi:10.1016/j.bbabio.2010.04.129

2P.33 Kinetic equivalence of membrane potential and pH difference across membrane in ATP synthesis by *Bacillus* PS3 F_0F_1 -ATP synthase

Naoki Soga¹, Kazuhiko Kinosita Jr.¹, Masasuke Yoshida^{2,3}, Toshiharu Suzuki²
¹Department of Physics, Waseda University, Japan
²ICORP ATP-Synthesis Regulation Project,
Japan Science and Technology Agency (JST), Japan
³Deptartment of Molecular Bioscience, Kyoto Sangyo University, Japan E-mail: naosoga@akane.waseda.jp

 F_0F_1 -ATP synthase synthesizes ATP by using proton motive force (pmf) that consists of transmembrane gradients of electrical potential $(\Delta\psi)$ and proton concentration (ΔpH) . The two terms are thermodynamically equivalent according to the chemiosmotic theory of P. Mitchell [1]. But their kinetic equivalence to drive F_0 has been reported to be varied by the source of F_0F_1 s and preparations. Here, using Bacillus PS3 F_0F_1 (TF_0F_1) with a mutation lacking inhibitory effect of ε , we have developed simple and highly reproducible procedures to prepare active proteoliposomes and to analyze kinetics of ATP synthesis which was driven by acid–base transition and $K^+/$ valinomycin diffusion potential. TF_0F_1 showed maximum rates of ATP synthesis of 18 s⁻¹ at 30° with K_m s for ADP and Pi, 19 and 500 μM, respectively. Then, the rates of ATP synthesis were determined under several combinations of $\Delta\psi$ and ΔpH . The rates were highly correlated to the pmf value calculated from $\Delta\psi$ and ΔpH , although

small deviation still remains. Osmotic imbalance between inside and outside of proteoliposomes has only little effect on the kinetics. Importantly, when K^+ concentration inside proteoliposomes is decreased below about 3 mM, it appears that Nernst equation tends to overestimate the valinomycin-induced $\Delta\psi$, which is one of the reasons of the deviation. Taking these results into consideration, we propose that rates of ATP synthesis are solely dependent on the magnitude of pmf but not on each of $\Delta\psi$ and ΔpH .

Reference

[1] Mitchell P (1961) Nature 191: 144-148.

doi:10.1016/j.bbabio.2010.04.130

2P.34 Isolation of the $\mathrm{H}^+\text{-ATP}$ synthase from E. coli and the stability of its subcomplexes

Ilka Starke, Sabrina Loschonsky, Susanne Fischer, Peter Gräber Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany

E-mail: ilka.starke@physchem.uni-freiburg.de

The H⁺-ATP synthase from *E. coli* (EFOF₁) and the hydrophilic part (EF₁) are isolated. The enzyme detergent micelles are purified either by sucrose density centrifugation or by ion exchange chromatography followed by gel permeation chromatography. For activity measurements EFOF₁ is reconstituted into phosphatidylcholine/phosphatidic acid liposomes and a transmembrane pH-difference is generated by an acid base transition. The initial rate of ATP synthesis is measured with luciferin/luciferase. The activity of EF₁ is measured by ATP hydrolysis with an ATP regenerating system. Analysis of the different fractions obtained after gel permeation chromatography reveals that the highest ATP synthesis activities and the highest ATP hydrolysis activities are found in different fractions, although the SDS-PAGE does not reveal significant differences in subunit composition of these fractions. Since the e-subunit is known to act as inhibitor of ATP hydrolysis without a significant effect on ATP synthesis, the dissociation of this subunit from the different subcomplexes was investigated. The dissociation constant of e was determined as described in [1]. The following dissociation constants are found: $K_D = 5.2$ nM for EF₁, $K_D = 0.7$ nM for EFOF₁ micelles, and $K_D = 0.1$ nM for EFOF₁ liposomes.

Reference

[1] Smith JB, Sternweis PC (1980) Biochemistry 19: 526–531.

doi:10.1016/j.bbabio.2010.04.131

2P.35 Biochemical and single-molecule analyses of human F_1 -ATPase

Toshiharu Suzuki¹, Chiaki Wakabayashi¹, Ei-ichiro Saita¹, Kazumi Tanaka¹, Shou Furuike², Kazuhiko Kinosita, Jr.³, Masasuke Yoshida^{1,4}

¹ICORP ATP-synthesis regulation project,
Japan Science and Technology Agency, Japan

²Department of Physiology, Division of Life Science,
Osaka Medical College, Japan

³Department of Physics, Faculty of Science and Engineering, Waseda Univ, Japan

⁴Department of Molecular Bioscience, Kyoto Sangyo University, Japan E-mail: toshisuz@atp.miraikan.jst.go.jp